
3.3 Idealized representations of distributions

Datasets are like snowflakes, in that every one is different, but nonetheless 
there are patterns that one often sees in different types of data. This allows us 
to use idealized representations of the data to further summarize them. Let’s 
take the adult height data plotted in 3.5, and plot them alongside a very 
different variable: pulse rate (heartbeats per minute), also measured in 
NHANES (see Figure 3.6).

While these plots certainly don’t look exactly the same, both have the general 
characteristic of being relatively symmetric around a rounded peak in the 
middle. This shape is in fact one of the commonly observed shapes of 
distributions when we collect data, which we call the normal (or Gaussian) 
distribution. This distribution is defined in terms of two values (which we
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Figure 3.6: Histograms for height (left) and pulse rate (right) in the 
NHANES dataset, with a normal distribution curve overlaid on each dataset.
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46 CHAPTER 3. SUMMARIZING DATA

call parameters of the distribution): the location of the center peak (which
we call the mean) and the width of the distribution (which is described in
terms of a parameter called the standard deviation). Figure 3.6 shows the
appropriate normal distribution plotted on top of each of the histrograms.You
can see that although the curves don’t fit the data exactly, they do a pretty
good job of characterizing the distribution – with just two numbers!

As we will see later in the course when we discuss the central limit theorem,
there is a deep mathematical reason why many variables in the world exhibit
the form of a normal distribution.

3.3.1 Skewness

The examples in Figure 3.6 followed the normal distribution fairly well, but
in many cases the data will deviate in a systematic way from the normal
distribution. One way in which the data can deviate is when they are
asymmetric, such that one tail of the distribution is more dense than the
other. We refer to this as “skewness”. Skewness commonly occurs when
the measurement is constrained to be non-negative, such as when we are
counting things or measuring elapsed times (and thus the variable can’t take
on negative values).

An example of skewness can be seen in the average waiting times at the
airport security lines at San Francisco International Airport, plotted in the
left panel of Figure 3.7. You can see that while most wait times are less than
20 minutes, there are a number of cases where they are much longer, over
60 minutes! This is an example of a “right-skewed” distribution, where the
right tail is longer than the left; these are common when looking at counts
or measured times, which can’t be less than zero. It’s less common to see
“left-skewed” distributions, but they can occur, for example when looking at
fractional values that can’t take a value greater than one.

3.3.2 Long-tailed distributions

Historically, statistics has focused heavily on data that are normally dis-
tributed, but there are many data types that look nothing like the normal
distribution. In particular, many real-world distributions are “long-tailed”,
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Figure 3.7: Examples of right-skewed and long-tailed distributions. Left:
Average wait times for security at SFO Terminal A (Jan-Oct 2017), obtained
from https://awt.cbp.gov/ . Right: A histogram of the number of Facebook
friends amongst 3,663 individuals, obtained from the Stanford Large Network
Database. The person with the maximum number of friends is indicated by
the diamond.
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meaning that the right tail extends far beyond the most typical members
of the distribution. One of the most interesting types of data where long-
tailed distributions occur arises from the analysis of social networks. For
an example, let’s look at the Facebook friend data from the Stanford Large
Network Database and plot the histogram of number of friends across the
3,663 people in the database (see right panel of Figure 3.7). As we can see,
this distribution has a very long right tail – the average person has 24.09
friends, while the person with the most friends (denoted by the blue dot) has
1043!

Long-tailed distributions are increasingly being recognized in the real world.
In particular, many features of complex systems are characterized by these
distributions, from the frequency of words in text, to the number of flights in
and out of different airports, to the connectivity of brain networks. There
are a number of different ways that long-tailed distributions can come about,
but a common one occurs in cases of the so-called “Matthew effect” from the
Christian Bible:

For to every one who has will more be given, and he will have
abundance; but from him who has not, even what he has will be
taken away. — Matthew 25:29, Revised Standard Version

This is often paraphrased as “the rich get richer”. In these situations, advan-
tages compound, such that those with more friends have access to even more 
new friends, and those with more money have the ability to do things that 
increase their riches even more.

As the course progresses we will see several examples of long-tailed distribu-
tions, and we should keep in mind that many of the tools in statistics can fail 
when faced with long-tailed data. As Nassim Nicholas Taleb pointed out in 
his book “The Black Swan”, such long-tailed distributions played a critical 
role in the 2008 financial crisis, because many of the financial models used by 
traders assumed that financial systems would follow the normal distribution, 
which they clearly did not.

https://snap.stanford.edu/data/egonets-Facebook.html
https://snap.stanford.edu/data/egonets-Facebook.html
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