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Chapter 13

Modeling continuous 
relationships

Most people are familiar with the concept of correlation, and in this section 
of the chapter we will provide a more formal understanding for this 
commonly used and misunderstood concept.

13.3 Covariance and correlation

One way to quantify the relationship between two continuous variables is by 
calculating their covariance. 

Remember that variance for a single variable is computed as the average 
squared difference between each data point and the mean:

The variance tells us how far each observation deviates from the mean, on 
average, in squared units. 

s2 =
∑n
i=1(xi − x̄)2

N − 1
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The covariance tells us whether there is a relation between the deviations of two different variables 
across observations. Covariance is defined as the following:

covariance =
∑n
i=1(xi − x̄)(yi − ȳ)

N − 1

The covariance will be far from zero when a variable x and another variable y are both highly 
deviant from the mean.

If both variables, x and y, are deviant in the same direction, then the covariance is positive. In 
contrast, if both variables, x and y, are deviant in opposite directions the covariance is negative. 

The covariance is simply the mean of the crossproducts. We don’t usually use the covariance to 
describe relationships between variables, because it varies with the overall level of variance in the 
data. 

Instead, we would usually use the correlation coefficient (often referred to as Pearson’s correlation 
after the statistician Karl Pearson). The correlation is computed by scaling the covariance by the 
standard deviations of the two variables:

r = covariance

sxsy
=
∑n
i=1(xi − x̄)(yi − ȳ)

(N − 1)sxsy

The correlation coefficient is useful because it varies between -1.000 and 1.000 regardless of the 
nature of the data. For that reason, as we already discussed, the correlation coefficient can be 
considered an effect sizes. A correlation of 1.000 indicates a perfect linear relationship, a correlation of 
-1.000 indicates a perfect negative relationship, and a correlation of 0.000 indicates no linear
relationship.

13.3.1 Hypothesis testing for correlations

Imagine we calculated a correlation between two continous variables and observed a correlation 
coefficient of 0.423. That correlation coefficiant seems to indicate a reasonably strong relationship 
between our two variables, but we can also imagine that this could occur by chance even if there is 
no relationship. 

Therefore, we can test the null hypothesis that the correlation is zero, using a simple equation that 
lets us convert a correlation value into a t statistic:

tr = r
√
N − 2√
1− r2

If this test shows that the likelihood of an r value this extreme or more is quite low, we can reject 
the null hypothesis that r = 0.000.  




